Thursday, 11 September 2008

New Climate Paper Provides Evidence for Negative Feedback

A new paper by Roy Spencer and William Braswell is now available as an early online release in the Journal of Climate. The paper is entitled: 'Potential Biases in Feedback Diagnosis from Observational Data: A Simple Model Demonstration.'

The Abstract states:

Feedbacks are widely considered to be the largest source of uncertainty in determining the sensitivity of the climate system to increasing anthropogenic greenhouse gas concentrations, yet our ability to diagnose them from observations has remained controversial. Here we use a simple model to demonstrate that any non-feedback source of top-of-atmosphere radiative flux variations can cause temperature variability which then results in a positive bias in diagnosed feedbacks. We demonstrate this effect with daily random flux variations, as might be caused by stochastic fluctuations in low cloud cover. The daily noise in radiative flux then causes interannual and decadal temperature variations in the model's 50 m deep swamp ocean. The amount of bias in the feedbacks diagnosed from time-averaged model output depends upon the size of the non-feedback flux variability relative to the surface temperature variability, as well as the sign and magnitude of the specified (true) feedback. For model runs producing monthly shortwave flux anomaly and temperature anomaly statistics similar to those measured by satellites, the diagnosed feedbacks have positive biases generally in the range of −0.3 to −0.8 W m−2 K−1. These results suggest that current observational diagnoses of cloud feedback – and possibly other feedbacks -- could be significantly biased in the positive direction.

No comments: